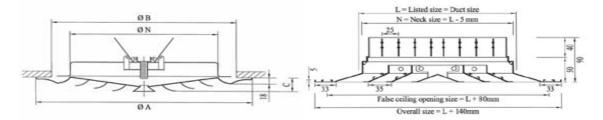
Features:

AEROSYS Ceiling diffusers circular and square are suitable for the introduction of supply air or the removal of extract air in the ceiling. Ceiling diffusers have been a popular product for many years,

and are often the standard air terminal in offices and shops. The geometric design is both aesthetically pleasing, especially when used in a square tile ceiling, and also enables a 50% free area to be created, retaining high performance when used for both supply and extract applications.

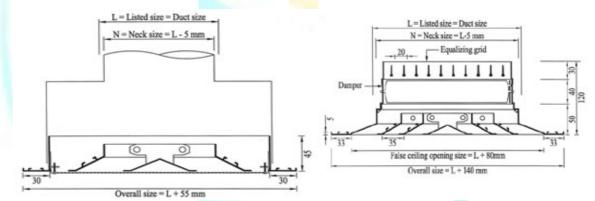
With one, two, three- and four-way blow diffusers available, **AEROSYS** makes every conceivable type of ceiling diffuser. We do hold four-way blow ceiling diffusers in stock; with square sizes of 150mm, 200mm, 225mm &

300mm held in stock at all times in RAL9010/RAL9016 finish, you can be assured of industry beating delivery times across all of these sizes of ceiling diffuser.

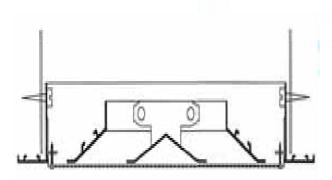

How to Order?

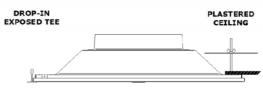
ltom	Model	S	pecificati	on	Mat	erial	Finish	
ltem		Frame	Way	Application	Frame	Blade		
Ceiling	SCD	Square	1 , 2, 3, 4	Supply / Return	AL*	Cone type	Mill / Powder coated	
Diffusers	RCD	Round	1	Supply / Return	AL*	Cone type	Mill Powder coated	

Standard Construction (AERO – SCD / RCD):


•	Frame	-	High quality extruded aluminum profile with 33 mm flange width.
•	Blades	-	Diffuser shall be coned type with each cone manufactured by extruded aluminum louvered profile or one-piece die formed aluminum construction
•	Fixing		arranged in concentric cones to deflect air equally in all directions. Louvered type core is fixed to the frame with aluminum pins loaded with steel springs. Core can be easily removable and interchangeable to allow for maximum flexibility in installation, maintenance and damper adjustment.
•	Bushes	_	Damper blades are separated from its frame by nylon bushes.
•	OBD	-	In case of supply the diffuser will be supplied with OBD (opposed blade damper) is screw operated from the face opening of the diffuser after removing the internal core.
•	Gasket	-	Foam gasket is sealed around the back of the frame as option to avoid air leakage.
•	Min. Size Max. Size	-	For Round Ceiling 6" Ø (150Ø mm) / Square ceiling diffuser 6" x 6" (150 x 150 mm). For Round Ceiling 16"Ø (400Ø mm) / Square Ceiling diffuser 24" x 24" (600 x 600 mm).

Dimensional Details (AERO – SCD / RCD):




Optional Construction (AERO – SCD / RCD):

- It can be with Equalizing grid.
- It can be with perforated fa eside.
- It can be supplied along wit 1 plenum.
- It can be supplied with multiple elements on request.
- Available in Mill Finish.

Recommended Installation Method (AERO – SCD / RCD):

SWIRL DIFFUSER

Swirl Diffuser:

AEROSYS Swirl diffusers consist of a diffuser face with fixed, radially arranged air control elements. Connection to the air duct system is effected via the plenum box, in either vertical or horizontal configuration. They are suitable for deployment in the commercial and industrial sectors, and are available in square and round design.

They consist of the diffuser face and the rear plenum box with round duct connection spigot on the side. The design of these swirl diffusers guarantees a swift reduction in temperature and flow velocity by means of swirling discharge and the addition of induction air.

How to Order?

Item	Model	Specif	fication	Mate	erial	Finish	
	Model	Casing	Blades	Casing	Blades		
4	VA	Rectangular	Fixed	AI	AI	Powder coated	
SD	VB	Rectangular	Adjustable	AI	AI	Powder coated	
	VC	Round	Adjustable	AI	Al	Powder coated	

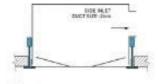
Standard Construction (AERO – SD-VA / SD-VB / SD-VC):

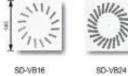
- Diffuser
- 1.2 mm thickAluminum sheet.
- Blades Fixed blade in case of SD-VA & adjustable blades in case of SD-VB / VC.
- Standard size 595 x 595 mm (SD VB/VC).
- Finish Powder coated as per RAL color codes.

Performance table:

Airflow (m³/h, m)	Sound Power level (DBA)	Static Pressure G.W	Throw (V _x - 0.25 m/s)
350	32	2.2	1.7
400	36	2.8	2
450	39	3.2	2.2
500	42	3.8	2.6
600	47	5.5	3
650	49	6	3.3
700	51	6.5	3.6

SWIRL DIFFUSER

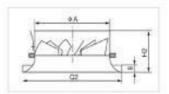




Slection Table:

Standard Size	Air Volume(m3/h)
595x595 (SD-VA)	290-600
595x595 (SD-VB16)	110-400
595x595 (SD-V824)	210-680
595x595 (SD-VB48)	360-830

Features: *Made of high quality iron sheet. *Fixed blades. Color RAL9010, RAL9016.



SD-VB16

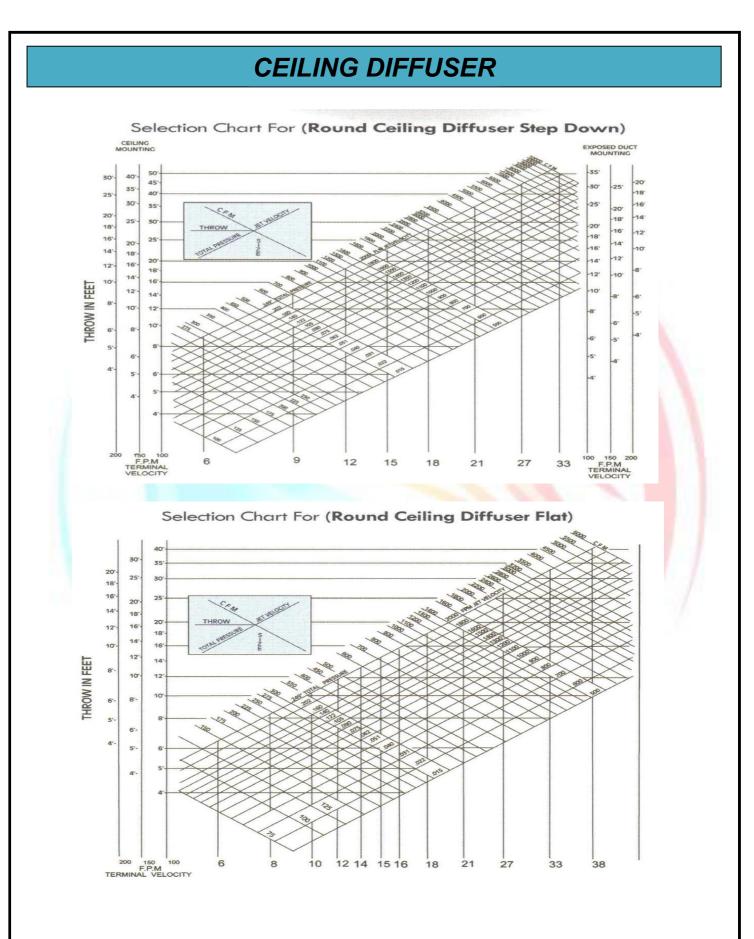
SD-V848

Features: *Made of high quality iron sheet. "With black adjustable blades. *Color RAL9010, RAL9016

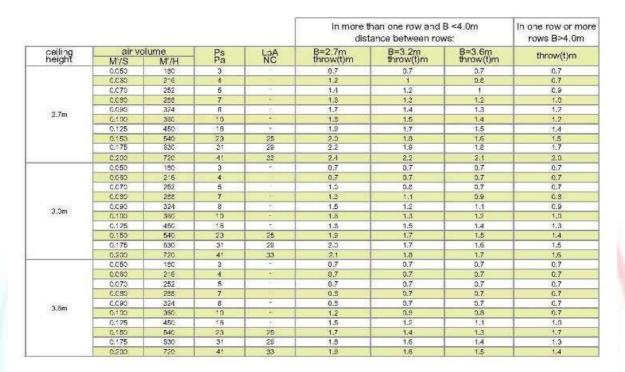
Features:

*Made of high quality aluminium sheet. *Adjustable blades *Color RAL9010, RAL9016.

Slection Table:


Standard Size	Air Volume(m3/h)
200	450
250	750
315	1500
400	2500
500	3000
630	3500

Engineering & Performance table for (AERO – SCD / RCD):


- Neck velocity is measure in m/sec.
- Pr Static pressure loss across the diffuser in mm of H₂O.
- Tx & Ty throw (meters) is measures for terminal velocities of 0.75, 0.5 & 0.25 m/sec.

				Vk OL	itlet Ve	elocity	FPM						Î _τ ,
000	1800	1500	1400	1200	1000	900	800	700	600	500		Listed Size	
Pr Total Pressure Inches H2O										Outlet Area			
25	.20	016	.12	.09	.06	.05	.04	.03	.02	.02			1
200	180	160	140	120	100	90	80	70	60	50	CFM	6×6	4
6.11 6.11	5.9 5.9	5.8 5.8	4.8 4.8	4.6 4.6	3.5 3.5	3.5 3.5	2.4 2.4	2.4 2.4	2.3 2.3	2.3 2.3	Хт	Ak.10	5
450	410	360	315	270	225	205	180	155	135	110	CFM	9×9	Way
8.14	7.13	6.12	6.11	5.9	5.8	4.6	3.5	3.5	2.4	2.4	Хт Үт	Ak.22	YE
B.14 800	7.13 725	6.12 640	6.11 560	5.9 480	5.8 400	4.6 360	3.5 320	3.5 280	2.4 240	2.4	CFM	10.10	Engineering
0.19	9.17	8.15	7.13	6.12	6.11	5.9	5.8	4.8	4.6	3.5	Х т Y Т	12×12 Ak.40	ine
0.19	9.17	8.15	7.13	6.12	6.11	5.9	5.8	4.8	4.6	3.5		AR. 70	èr
and the second se	1125	1000	875	750 8.15	625 6.12	565 6.11	500 6,11	440 5.9	375 4.8	310 4.6	CFM	15×15	inc
	12.21	10.19	10.18	8.15	6.12	6.11	6.11	5.9 5.9	4.0	4.6	Х Y T	Ak.62	
800	1620	1440	1260	1080	900	810	720	630	540	450	CFM	18×18	erf
	15.27 15.27	13.23 13.23	11.20	10.17	8.5 8.5	7.13	6.12 6.12	5.11 5.11	5.9 5.9	4.8 4.8	Хт	Ak.90	Performance
	2220	1970	1725	1475	1230	1110	985	860	740	615	CFM	21x21	na
9.35	17.31	15.29	13.25	11.21	9.17	9.15	8.14	7.13	6.11	5.9	Хт	A k 1.23	no
and the second design of the	17.31	15.29	13.25	11.21	9.17	9.15	8.14 1275	7.13	6.11 960	5.9 800	CFM		
	2890 18.35	2570 16.31	2240 14.29	1925	1600 10.19	1440 9.17	8.15	7.14	7.13	5.11	×	24x24 Ak1.6	Data.
0.39	18.35	16.31	14.29	12.23	10.19	9.17	8.15	7.14	7.13	5.11	Y	Ak1.0	Q.
	3650	3240	2840	2430	2020	1820	1615	1420	1215	1010	CFM	27×27	
	20.38 20.38	18.35 18.35	16.32 16.32	14.27	12.22	10.19 10.19	10.18	8.15 8.15	7.13 7.13	6.12 6.12	Хт	A k 2.02	
	4950	4400	3850	3300	2750	2470	2200	1925	1650	1370	CFM	33x33	
	27.46	23.41	19.37	18.33	16.27	14.24 14.24	12.21 12.21	10.18 10.18	9.16 9.16	7.13	Хт	A x 2.75	
1.50	27.46	23.41	19.37	18.33	16.27	14.24	12.21	10.18	9.10	7.13			
		Service Second and Advantages Second		Vk O	utlet V	elocity	FPM						
2000	1800	1500	1400	1200	1000	900	800	700	600	500		Listed Size	
		1	P	Total	Press	ure Ind	ches H	20				Outlet Area	
.25	.20	016	.12	.09	.06	.05	.04	.03	.02	.02	T	1	
200	180	160	140	120	100	90	80	70	60	50	CFM	6x6	
7.13	6.11	6.11	6.10	5.9	4.7	4.7	3.5	3.5	2.4	2.4	XT	Ax.10	ω
4.8	4.7	4.7	3.6	3.6	2.4	2.4	2.3	2.3	1.2	1.2			Way
450	410	360	315	270	225	205	180	155	135	110	CFM	- 9×9	9
1.20	10.18	9.15	7.13	6.12	5.9	5.9	4.8	4.7	3.6	2.4	Х Y Т		m
7.12	6.11	6.10	5.9	4.7	3.6	3.6	2.4	2.4	2.3	2.3	Sen American American Manual		Engine
800	725	640	560	480	400	360	320	280	240	200	CFM	T I CAI C	3
6.27	14.24	13.22	12.21	9.16	7.13	6.11	6.10	6.10	5.9	4.7	Хт	Ax.40	8

ering 9.16 8.14 8.13 7.12 6.10 5.9 4.8 4.7 4.7 3.6 2.5 Y 1250 1125 1000 875 750 625 565 500 440 375 310 CFM 15×15 19.33 12.21 17.29 15.26 13.23 11.19 9.16 6.10 8.15 5.9 8.14 4.8 7.13 6.11 4.7 4.8 Хт Ax.62 Performance 10.18 9.15 900 810 720 630 540 450 CFM 1800 1620 1440 1260 1080 18×18 23.40 14.25 20.35 12.22 18.32 11.20 15.26 10.18 13.24 9.15 11.20 7.12 10.18 6.11 9.15 6.10 7.13 5.9 6.11 4.7 4.9 ×т Ax.90 3.5 CFM 2460 2220 1970 1725 1475 1230 1110 985 860 740 615 21x21 24.42 16.25 19.34 11.20 13.23 11.20 7.12 11.19 6.11 7.13 5.11 27.45 18.29 21.39 14.23 16.29 10.17 12.21 Ax1.23 Хт 8.14 8.13 Data. CFM 2240 1600 1440 1275 1120 960 800 3200 2890 2570 1925 24×24 21.35 14.24 13.21 11.19 7.13 7.14 Хт Ax1.6 25.39 17.31 16.27 14.24 9.16 32.47 28.43 20.33 18.31 16.27 11.19 9.16 9.15 8.14 6.11 3240 2840 2020 1820 1615 1420 1215 1010 CFM 4040 3650 2430 27×27 31.50 28.46 25.41 18.30 22.37 18.31 15.27 14.25 13.23 11.20 87.13 9.16 6.11 7.13 Хт Ax2.02 9.16 9.15

Performance Data - Swirl Diffuser

Notes On Performance Data

1. Throw is based on a \mathcal{C}^{α} temperature differentia.

The dB(A) values are based on a T0 ob norm attenuation.
Performance Data are sobject to change without notice for rurther improvement.

$$\begin{split} & \text{Neck V8I} + \text{Neck Velocity; m/s} \quad P = \text{Pressure; mm } \mathbb{R}^2 O \\ T = \text{Throw, m} \quad Q = \text{Airllow, m}^2 h \quad \mathcal{CBAI} = \text{Notes revel} \end{split}$$